Showing posts with label WindEnergy. Show all posts
Showing posts with label WindEnergy. Show all posts

Tuesday, December 23, 2025

What Do The Economic Data Reveal About The Ongoing Energy Transition?

Gabrielle Merite for Vox

At every light switch, power socket, and on the road, an unstoppable revolution is already underway. Technologies that can power our lives and jobs while doing less harm to the global climate wind, solar, batteries, etc. are getting cheaper, more efficient, and more abundant. The pace of progress on price, scale, and performance has been so extraordinary that even the most optimistic forecasts about green tech in the past have turned out to be too pessimistic………Continue reading….

By: Umair IrfanBenji JonesAdam Clark Estes, and Sam Delgado

Source: Vox

.

Critics:

According to Food and Agriculture Organization, around 30% of Earth’s land area is largely unusable for humans (glaciers, deserts, etc.), 26% is forests, 10% is shrubland and 34% is agricultural land. Deforestation is the main land use change contributor to global warming, as the destroyed trees release CO2, and are not replaced by new trees, removing that carbon sink.

Between 2001 and 2018, 27% of deforestation was from permanent clearing to enable agricultural expansion for crops and livestock. Another 24% has been lost to temporary clearing under the shifting cultivation agricultural systems. 26% was due to logging for wood and derived products, and wildfires have accounted for the remaining 23%. Some forests have not been fully cleared, but were already degraded by these impacts. Restoring these forests also recovers their potential as a carbon sink.

Local vegetation cover impacts how much of the sunlight gets reflected back into space (albedo), and how much heat is lost by evaporation. For instance, the change from a dark forest to grassland makes the surface lighter, causing it to reflect more sunlight. Deforestation can also modify the release of chemical compounds that influence clouds, and by changing wind patterns.

 In tropic and temperate areas the net effect is to produce significant warming, and forest restoration can make local temperatures cooler. At latitudes closer to the poles, there is a cooling effect as forest is replaced by snow-covered (and more reflective) plains. Globally, these increases in surface albedo have been the dominant direct influence on temperature from land use change. Thus, land use change to date is estimated to have a slight cooling effect.

Air pollution, in the form of aerosols, affects the climate on a large scale. Aerosols scatter and absorb solar radiation. From 1961 to 1990, a gradual reduction in the amount of sunlight reaching the Earth’s surface was observed. This phenomenon is popularly known as global dimming, and is primarily attributed to sulfate aerosols produced by the combustion of fossil fuels with heavy sulfur concentrations like coal and bunker fuel.

 Smaller contributions come from black carbon, organic carbon from combustion of fossil fuels and biofuels, and from anthropogenic dustGlobally, aerosols have been declining since 1990 due to pollution controls, meaning that they no longer mask greenhouse gas warming as much. Aerosols also have indirect effects on the Earth’s energy budget. Sulfate aerosols act as cloud condensation nuclei and lead to clouds that have more and smaller cloud droplets.

These clouds reflect solar radiation more efficiently than clouds with fewer and larger droplets. They also reduce the growth of raindrops, which makes clouds more reflective to incoming sunlight. Indirect effects of aerosols are the largest uncertainty in radiative forcing. While aerosols typically limit global warming by reflecting sunlight, black carbon in soot that falls on snow or ice can contribute to global warming.

Not only does this increase the absorption of sunlight, it also increases melting and sea-level rise. Limiting new black carbon deposits in the Arctic could reduce global warming by 0.2 °C by 2050. The effect of decreasing sulfur content of fuel oil for ships since 2020 is estimated to cause an additional 0.05 °C increase in global mean temperature by 2050.

The environmental effects of climate change are broad and far-reaching, affecting oceans, ice, and weather. Changes may occur gradually or rapidly. Evidence for these effects comes from studying climate change in the past, from modelling, and from modern observations. Since the 1950s, droughts and heat waves have appeared simultaneously with increasing frequency. Extremely wet or dry events within the monsoon period have increased in India and East Asia.

Monsoonal precipitation over the Northern Hemisphere has increased since 1980. The rainfall rate and intensity of hurricanes and typhoons is likely increasing, and the geographic range likely expanding poleward in response to climate warming. Frequency of tropical cyclones has not increased as a result of climate change. Global sea level is rising as a consequence of thermal expansion and the melting of glaciers and ice sheets.

Between 1993 and 2020, the rise increased over time, averaging 3.3 ± 0.3 mm per year. Over the 21st century, the IPCC projects 32–62 cm of sea level rise under a low emission scenario, 44–76 cm under an intermediate one and 65–101 cm under a very high emission scenario. Marine ice sheet instability processes in Antarctica may add substantially to these values including the possibility of a 2-meter sea level rise by 2100 under high emissions.

Climate change has led to decades of shrinking and thinning of the Arctic sea ice. While ice-free summers are expected to be rare at 1.5 °C degrees of warming, they are set to occur once every three to ten years at a warming level of 2 °C. Higher atmospheric CO2 concentrations cause more CO2 to dissolve in the oceans, which is making them more acidic. Because oxygen is less soluble in warmer water, its concentrations in the ocean are decreasing, and dead zones are expanding.

Recent warming has driven many terrestrial and freshwater species poleward and towards higher altitudes. For instance, the range of hundreds of North American birds has shifted northward at an average rate of 1.5 km/year over the past 55 years. Higher atmospheric CO2 levels and an extended growing season have resulted in global greening.

However, heatwaves and drought have reduced ecosystem productivity in some regions. The future balance of these opposing effects is unclear. A related phenomenon driven by climate change is woody plant encroachment, affecting up to 500 million hectares globally. Climate change has contributed to the expansion of drier climate zones, such as the expansion of deserts in the subtropics.

The size and speed of global warming is making abrupt changes in ecosystems more likely. Overall, it is expected that climate change will result in the extinction of many species. The oceans have heated more slowly than the land, but plants and animals in the ocean have migrated towards the colder poles faster than species on land.

Just as on land, heat waves in the ocean occur more frequently due to climate change, harming a wide range of organisms such as corals, kelp, and seabirds. Ocean acidification makes it harder for marine calcifying organisms such as mussels, barnacles and corals to produce shells and skeletons; and heatwaves have bleached coral reefs.

Harmful algal blooms enhanced by climate change and eutrophication lower oxygen levels, disrupt food webs and cause great loss of marine life. Coastal ecosystems are under particular stress. Almost half of global wetlands have disappeared due to climate change and other human impacts. Plants have come under increased stress from damage by insects.

The effects of climate change are impacting humans everywhere in the world. Impacts can be observed on all continents and ocean regions, with low-latitude, less developed areas facing the greatest risk. Continued warming has potentially “severe, pervasive and irreversible impacts” for people and ecosystems. The risks are unevenly distributed, but are generally greater for disadvantaged people in developing and developed countries.

In the last 4 hours

Wednesday, November 12, 2025

Europe Promotes Energy Use In Data Centers While Millions Go Cold 

Lone Thomasky & Bits&Bäume / Better Images of AI / CC by 4.0

Understanding where data centers fit within Europe’s broader energy landscape is challenging. Part of the difficulty lies in the limited data on their energy and resource use, but it also reflects wider uncertainty about the future of Europe’s energy systems. The issue sits awkwardly between policy communities in energy, environment and information technology, fields that have historically had little interaction and where complex systems, both natural and artificial, face off against one another…….Continue reading….

By: William Burns

Source: Tech Policy

.

Critics:

Renewable energy stands in contrast to fossil fuels, which are being used far more quickly than they are being replenished. Renewable energy resources and significant opportunities for energy efficiency exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. 

 

Rapid deployment of renewable energy and energy efficiency, and technological diversification of energy sources, would result in significant energy security and economic benefits. Solar and wind power have got much cheaper. In some cases it will be cheaper to transition to these sources as opposed to continuing to use the current, inefficient, fossil fuels.

In addition, electrification with renewable energy is more efficient and therefore leads to significant reductions in primary energy requirements. It would also reduce environmental pollution such as air pollution caused by the burning of fossil fuels, and improve public health, reduce premature mortalities due to pollution and save associated health costs that could amount to trillions of dollars annually.

Multiple analyses of decarbonization strategies have found that quantified health benefits can significantly offset the costs of implementing these strategies. Climate change concerns, coupled with the continuing fall in the costs of some renewable energy equipment, such as wind turbines and solar panels, are driving increased use of renewables.

New government spending, regulation and policies helped the industry weather the global financial crisis better than many other sectors. As of 2019, however, according to the International Renewable Energy Agency, renewables overall share in the energy mix (including power, heat and transport) needs to grow six times faster, in order to keep the rise in average global temperatures “well below” 2.0 °C (3.6 °F) during the present century, compared to pre-industrial levels.

A household’s solar panels, and batteries if they have them, can often either be used for just that household or if connected to an electrical grid can be aggregated with millions of others. Over 44 million households use biogas made in household-scale digesters for lighting and/or cooking, and more than 166 million households rely on a new generation of more-efficient biomass cookstoves.

 According to the research, a nation must reach a certain point in its growth before it can take use of more renewable energy. In our words, its addition changed how crucial input factors (labor and capital) connect to one another, lowering their overall elasticity and increasing the apparent economies of scale.

United Nations’ eighth Secretary-General Ban Ki-moon has said that renewable energy has the ability to lift the poorest nations to new levels of prosperity. At the national level, at least 30 nations around the world already have renewable energy contributing more than 20% of energy supply. Although many countries have various policy targets for longer-term shares of renewable energy these tend to be only for the power sector,including a 40% target of all electricity generated for the European Union by 2030.

Renewable energy often displaces conventional fuels in four areas: electricity generation, hot water/space heating, transportation, and rural (off-grid) energy services. More than a quarter of electricity is generated from renewables as of 2021. One of the efforts to decarbonize transportation is the increased use of electric vehicles (EVs). Despite that and the use of biofuels, such as biojet, less than 4% of transport energy is from renewables.

Occasionally hydrogen fuel cells are used for heavy transport. Solar water heating makes an important contribution to renewable heat in many countries, most notably in China, which now has 70% of the global total (180  GWth). Most of these systems are installed on multi-family apartment buildings and meet a portion of the hot water needs of an estimated 50–60 million households in China.

Worldwide, total installed solar water heating systems meet a portion of the water heating needs of over 70 million households. Heat pumps provide both heating and cooling, and also flatten the electric demand curve and are thus an increasing priority. Renewable thermal energy is also growing rapidly. About 10% of heating and cooling energy is from renewables. Solar energy, radiant light and heat from the sun, is harnessed using a range of ever-evolving technologies such as solar heating, photovoltaics, concentrated solar power (CSP), concentrator photovoltaics (CPV), solar architecture and artificial photosynthesis.

Most new renewable energy is solar. Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert, and distribute solar energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air. 

Active solar technologies encompass solar thermal energy, using solar collectors for heating, and solar power, converting sunlight into electricity either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP).

A photovoltaic system converts light into electrical direct current (DC) by taking advantage of the photoelectric effect. Solar PV has turned into a multi-billion, fast-growing industry, continues to improve its cost-effectiveness, and has the most potential of any renewable technologies together with CSP. Concentrated solar power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. 

Commercial concentrated solar power plants were first developed in the 1980s. CSP-Stirling has by far the highest efficiency among all solar energy technologies.

In 2011, the International Energy Agency said that “the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating climate change, and keep fossil fuel prices lower than otherwise. 

These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared”. Solar power accounts for 505 GW annually, which is about 2% of the world’s electricity. Solar energy can be harnessed anywhere that receives sunlight; however, the amount of solar energy that can be harnessed for electricity generation is influenced by weather conditions, geographic location and time of day.

According to chapter 6 of the IPCC 2022 climate mitigation report, the global potential of direct solar energy far exceeds that of any other renewable energy resource. It is well beyond the total amount of energy needed in order to support mitigation over the current century. Australia has the largest proportion of solar electricity in the world, supplying 9.9% of the country’s electrical demand in 2020. 

More than 30 per cent of Australian households now have rooftop solar PV, with a combined capacity exceeding 11 GW. There are, however, environmental implications of scaling up solar energy. In particular, the demand for raw materials such as aluminum poses concerns over the carbon footprint that will result from harvesting raw materials needed to implement solar energy.

In the last half hour
In the last 2 hours
In the last 4 hours
In the last 6 hours
In the last 8 hours
Earlier Today
Yesterday
.
.
 

Leave a Reply

Blogi AI Writer The Advanced Autoblogger Creator With Multi AI Writer

Credit to:  arminhamidian If you’re creating content that Google deems low-quality, redundant, or simply not up to par, it’s at risk of bein...