Thursday, September 4, 2025

How Indoor Farms are Solving Food’s Biggest Problems 

Inside an eight-acre greenhouse on the outskirts of Macon, Georgia, more than eight million pounds of lettuce are harvested annually, untouched by external weather conditions, pesticides, or even human hands. The produce picked and packaged here is then shipped directly to regional retailers and food banks, skipping multiple links in the typical salad’s supply chain. This facility joins a network of a half-dozen other greenhouses strategically placed around the country……Continue reading….

By: Brightfarms

Source: Fast Company

.

Critics:

Pastoralism involves managing domesticated animals. In nomadic pastoralism, herds of livestock are moved from place to place in search of pasture, fodder, and water. This type of farming is practiced in arid and semi-arid regions of Sahara, Central Asia and some parts of India.

In shifting cultivation, a small area of forest is cleared by cutting and burning the trees. The cleared land is used for growing crops for a few years until the soil becomes too infertile, and the area is abandoned. Another patch of land is selected and the process is repeated. This type of farming is practiced mainly in areas with abundant rainfall where the forest regenerates quickly. This practice is used in Northeast India, Southeast Asia, and the Amazon Basin.

Subsistence farming is practiced to satisfy family or local needs alone, with little left over for transport elsewhere. It is intensively practiced in Monsoon Asia and South-East Asia. An estimated 2.5 billion subsistence farmers worked in 2018, cultivating about 60% of the earth’s arable land. Intensive farming is cultivation to maximize productivity, with a low fallow ratio and a high use of inputs (water, fertilizer, pesticide and automation). It is practiced mainly in developed countries.

Cropping systems vary among farms depending on the available resources and constraints; geography and climate of the farm; government policy; economic, social and political pressures; and the philosophy and culture of the farmer. Shifting cultivation (or slash and burn) is a system in which forests are burnt, releasing nutrients to support cultivation of annual and then perennial crops for a period of several years.

Then the plot is left fallow to regrow forest, and the farmer moves to a new plot, returning after many more years (10–20). This fallow period is shortened if population density grows, requiring the input of nutrients (fertilizer or manure) and some manual pest control. Annual cultivation is the next phase of intensity in which there is no fallow period. This requires even greater nutrient and pest control inputs.

Further industrialization led to the use of monocultures, when one cultivar is planted on a large acreage. Because of the low biodiversity, nutrient use is uniform and pests tend to build up, necessitating the greater use of pesticides and fertilizers. Multiple cropping, in which several crops are grown sequentially in one year, and intercropping, when several crops are grown at the same time, are other kinds of annual cropping systems known as polycultures.

In subtropical and arid environments, the timing and extent of agriculture may be limited by rainfall, either not allowing multiple annual crops in a year, or requiring irrigation. In all of these environments perennial crops are grown (coffee, chocolate) and systems are practiced such as agroforestry. In temperate environments, where ecosystems were predominantly grassland or prairie, highly productive annual farming is the dominant agricultural system.

Important categories of food crops include cereals, legumes, forage, fruits and vegetables. Natural fibers include cotton, wool, hemp, silk and flax. Specific crops are cultivated in distinct growing regions throughout the world. Production is listed in millions of metric tons, based on FAO estimates. Crop alteration has been practiced by humankind for thousands of years, since the beginning of civilization.

Altering crops through breeding practices changes the genetic make-up of a plant to develop crops with more beneficial characteristics for humans, for example, larger fruits or seeds, drought-tolerance, or resistance to pests. Significant advances in plant breeding ensued after the work of geneticist Gregor Mendel. His work on dominant and recessive alleles, although initially largely ignored for almost 50 years, gave plant breeders a better understanding of genetics and breeding techniques.

Crop breeding includes techniques such as plant selection with desirable traits, self-pollination and cross-pollination, and molecular techniques that genetically modify the organism. Domestication of plants has, over the centuries increased yield, improved disease resistance and drought tolerance, eased harvest and improved the taste and nutritional value of crop plants. Careful selection and breeding have had enormous effects on the characteristics of crop plants.

Plant selection and breeding in the 1920s and 1930s improved pasture (grasses and clover) in New Zealand. Extensive X-ray and ultraviolet induced mutagenesis efforts (i.e. primitive genetic engineering) during the 1950s produced the modern commercial varieties of grains such as wheat, corn (maize) and barley. The Green Revolution popularized the use of conventional hybridization to sharply increase yield by creating “high-yielding varieties”.

For example, average yields of corn (maize) in the US have increased from around 2.5 tons per hectare (t/ha) (40 bushels per acre) in 1900 to about 9.4 t/ha (150 bushels per acre) in 2001. Similarly, worldwide average wheat yields have increased from less than 1 t/ha in 1900 to more than 2.5 t/ha in 1990. South American average wheat yields are around 2 t/ha, African under 1 t/ha, and Egypt and Arabia up to 3.5 to 4 t/ha with irrigation. In contrast, the average wheat yield in countries such as France is over 8 t/ha.

Variations in yields are due mainly to variation in climate, genetics, and the level of intensive farming techniques (use of fertilizers, chemical pest control, and growth control to avoid lodging). Since the 1940s, agricultural productivity has increased dramatically, due largely to the increased use of energy-intensive mechanization, fertilizers and pesticides. The vast majority of this energy input comes from fossil fuel sources.

Between the 1960s and the 1980s, the Green Revolution transformed agriculture around the globe, with world grain production increasing significantly (between 70% and 390% for wheat and 60% to 150% for rice, depending on geographic area) as world population doubled. Heavy reliance on petrochemicals has raised concerns that oil shortages could increase costs and reduce agricultural output.

Industrialized agriculture depends on fossil fuels in two fundamental ways: direct consumption on the farm and manufacture of inputs used on the farm. Direct consumption includes the use of lubricants and fuels to operate farm vehicles and machinery.

In the last 6 hours
In the last 8 hours
Earlier Today

Leave a Reply

No comments:

Post a Comment

Bitcoin’s Record Highs Fade Into Consolidation Where Does Crypto Go From Here?

Bitcoin  is settling into a quieter phase after a record-breaking summer rally. In mid-August, the cryptocurrency touched an all-time high n...