Image: NASA
According to recent observations, the European Space Agency now says the probability of asteroid 2024 YR4 hitting our planet has dropped to just 0.16 percent. That follows an announcement yesterday from NASA’s Center for Near-Earth Object Studies at its Jet Propulsion Laboratory saying there was a 0.28 percent chance the asteroid would impact Earth. Earlier this week, the odds of the asteroid impacting Earth on December 22nd, 2032, were closer to 3.1 percent……..Continue reading……
By: Andrew Liszewski
Source: The Verge
.
Critics:
Despite their large numbers, asteroids are a relatively recent discovery, with the first one—Ceres—only being identified in 1801. Only one asteroid, 4 Vesta, which has a relatively reflective surface, is normally visible to the naked eye in dark skies when it is favorably positioned. Rarely, small asteroids passing close to Earth may be briefly visible to the naked eye. As of April 2022, the Minor Planet Center had data on 1,199,224 minor planets in the inner and outer Solar System, of which about 614,690 had enough information to be given numbered designations.
The first asteroids to be discovered were assigned iconic symbols like the ones traditionally used to designate the planets. By 1852 there were two dozen asteroid symbols, which often occurred in multiple variants. In 1851, after the fifteenth asteroid, Eunomia, had been discovered, Johann Franz Encke made a major change in the upcoming 1854 edition of the Berliner Astronomisches Jahrbuch (BAJ, Berlin Astronomical Yearbook). He introduced a disk (circle), a traditional symbol for a star, as the generic symbol for an asteroid.
The circle was then numbered in order of discovery to indicate a specific asteroid. The numbered-circle convention was quickly adopted by astronomers, and the next asteroid to be discovered (16 Psyche, in 1852) was the first to be designated in that way at the time of its discovery. However, Psyche was given an iconic symbol as well, as were a few other asteroids discovered over the next few years. 20 Massalia was the first asteroid that was not assigned an iconic symbol, and no iconic symbols were created after the 1855 discovery of 37 Fides.
Many asteroids are the shattered remnants of planetesimals, bodies within the young Sun’s solar nebula that never grew large enough to become planets. It is thought that planetesimals in the asteroid belt evolved much like the rest of objects in the solar nebula until Jupiter neared its current mass, at which point excitation from orbital resonances with Jupiter ejected over 99% of planetesimals in the belt.
Simulations and a discontinuity in spin rate and spectral properties suggest that asteroids larger than approximately 120 km (75 mi) in diameter accreted during that early era, whereas smaller bodies are fragments from collisions between asteroids during or after the Jovian disruption.Ceres and Vesta grew large enough to melt and differentiate, with heavy metallic elements sinking to the core, leaving rocky minerals in the crust.
In the Nice model, many Kuiper-belt objects are captured in the outer asteroid belt, at distances greater than 2.6 AU. Most were later ejected by Jupiter, but those that remained may be the D-type asteroids, and possibly include Ceres. The majority of known asteroids orbit within the asteroid belt between the orbits of Mars and Jupiter, generally in relatively low-eccentricity (i.e. not very elongated) orbits.
This belt is estimated to contain between 1.1 and 1.9 million asteroids larger than 1 km (0.6 mi) in diameter, and millions of smaller ones. These asteroids may be remnants of the protoplanetary disk, and in this region the accretion of planetesimals into planets during the formative period of the Solar System was prevented by large gravitational perturbations by Jupiter. Contrary to popular imagery, the asteroid belt is mostly empty. The asteroids are spread over such a large volume that reaching an asteroid without aiming carefully would be improbable.
Nonetheless, hundreds of thousands of asteroids are currently known, and the total number ranges in the millions or more, depending on the lower size cutoff. Over 200 asteroids are known to be larger than 100 km, and a survey in the infrared wavelengths has shown that the asteroid belt has between 700,000 and 1.7 million asteroids with a diameter of 1 km or more. The absolute magnitudes of most of the known asteroids are between 11 and 19, with the median at about 16.
Near-Earth asteroids, or NEAs, are asteroids that have orbits that pass close to that of Earth. Asteroids that actually cross Earth’s orbital path are known as Earth-crossers. As of April 2022, a total of 28,772 near-Earth asteroids were known; 878 have a diameter of one kilometer or larger. A small number of NEAs are extinct comets that have lost their volatile surface materials, although having a faint or intermittent comet-like tail does not necessarily result in a classification as a near-Earth comet, making the boundaries somewhat fuzzy.
The rest of the near-Earth asteroids are driven out of the asteroid belt by gravitational interactions with Jupiter.Many asteroids have natural satellites (minor-planet moons). As of October 2021, there were 85 NEAs known to have at least one moon, including three known to have two moons. The asteroid 3122 Florence, one of the largest potentially hazardous asteroids with a diameter of 4.5 km (2.8 mi), has two moons measuring 100–300 m (330–980 ft) across, which were discovered by radar imaging during the asteroid’s 2017 approach to Earth.
It is unclear whether Martian moons Phobos and Deimos are captured asteroids or were formed due to impact event on Mars.[58] Phobos and Deimos both have much in common with carbonaceous C-type asteroids, with spectra, albedo, and density very similar to those of C- or D-type asteroids. Based on their similarity, one hypothesis is that both moons may be captured main-belt asteroids.
Both moons have very circular orbits which lie almost exactly in Mars’s equatorial plane, and hence a capture origin requires a mechanism for circularizing the initially highly eccentric orbit, and adjusting its inclination into the equatorial plane, most probably by a combination of atmospheric drag and tidal forces, although it is not clear whether sufficient time was available for this to occur for Deimos. Capture also requires dissipation of energy. The current Martian atmosphere is too thin to capture a Phobos-sized object by atmospheric braking.
Geoffrey A. Landis has pointed out that the capture could have occurred if the original body was a binary asteroid that separated under tidal forces. Asteroids vary greatly in size, from almost 1000 km for the largest down to rocks just 1 meter across, below which an object is classified as a meteoroid. The three largest are very much like miniature planets: they are roughly spherical, have at least partly differentiated interiors,and are thought to be survivingprotoplanets.
The vast majority, however, are much smaller and are irregularly shaped; they are thought to be either battered planetesimals or fragments of larger bodies. The dwarf planet Ceres is by far the largest asteroid, with a diameter of 940 km (580 mi). The next largest are 4 Vesta and 2 Pallas, both with diameters of just over 500 km (300 mi). Vesta is the brightest of the four main-belt asteroids that can, on occasion, be visible to the naked eye.
On some rare occasions, a near-Earth asteroid may briefly become visible without technical aid; see 99942 Apophis. Three largest objects in the asteroid belt, Ceres, Vesta, and Pallas, are intact protoplanets that share many characteristics common to planets, and are atypical compared to the majority of irregularly shaped asteroids. The fourth-largest asteroid, Hygiea, appears nearly spherical although it may have an undifferentiated interior, like the majority of asteroids. The four largest asteroids constitute half the mass of the asteroid belt.
Ceres is the only asteroid that appears to have a plastic shape under its own gravity and hence the only one that is a dwarf planet. It has a much higher absolute magnitude than the other asteroids, of around 3.32, and may possess a surface layer of ice. Like the planets, Ceres is differentiated: it has a crust, a mantle and a core. No meteorites from Ceres have been found on Earth. Vesta, too, has a differentiated interior, though it formed inside the Solar System’s frost line, and so is devoid of water; its composition is mainly of basaltic rock with minerals such as olivine. Aside from the large crater at its southern pole,
Rheasilvia, Vesta also has an ellipsoidal shape. Vesta is the parent body of the Vestian family and other V-type asteroids, and is the source of the HED meteorites, which constitute 5% of all meteorites on Earth. Pallas is unusual in that, like Uranus, it rotates on its side, with its axis of rotation tilted at high angles to its orbital plane. Its composition is similar to that of Ceres: high in carbon and silicon, and perhaps partially differentiated. Pallas is the parent body of the Palladian family of asteroids.
Hygiea is the largest carbonaceous asteroidand, unlike the other largest asteroids, lies relatively close to the plane of the ecliptic. It is the largest member and presumed parent body of the Hygiean family of asteroids. Because there is no sufficiently large crater on the surface to be the source of that family, as there is on Vesta, it is thought that Hygiea may have been completely disrupted in the collision that formed the Hygiean family and recoalesced after losing a bit less than 2% of its mass.
Observations taken with the Very Large Telescope’s SPHERE imager in 2017 and 2018, revealed that Hygiea has a nearly spherical shape, which is consistent both with it being in hydrostatic equilibrium, or formerly being in hydrostatic equilibrium, or with being disrupted and recoalescing.
Leave a Reply