For years, artificial intelligence has been trapped behind screens, powering chatbots and crunching data. But the next big revolution in AI won’t just talk; it will walk, move, and work in ways very similar to us. I’m talking, of course, about humanoid robots. These creations are finally stepping out of science fiction and into reality, possibly poised to become the most disruptive AI advancement yet. From factory floors to elder care, these machines could easily reshape industries, redefine labor……Continue reading…..
By: Luke Lango
Source: InvestorPlace
.
Critics:
There is no consensus on which machines qualify as robots but there is general agreement among experts, and the public, that robots tend to possess some or all of the following abilities and functions: accept electronic programming, process data or physical perceptions electronically, operate autonomously to some degree, move around, operate physical parts of itself or physical processes, sense and manipulate their environment, and exhibit intelligent behavior, especially behavior which mimics humans or other animals.
The word robot can refer to both physical robots and virtual software agents, but the latter are usually referred to as bots. Related to the concept of a robot is the field of synthetic biology, which studies entities whose nature is more comparable to living things than to machines. Simpler automated machines are called automatons, like animatronics, often made to resemble humans or animals.
Humanoid robots that resemble humans esthetically, possibly even organically, are called androids, while android can be shortened to droid, referring to robots with a broader likeness. On the other hand a human that is augmented with artificial machines is called a cyborg, which is a particular type of transhuman. Various techniques have emerged to develop the science of robotics and robots. One method is evolutionary robotics, in which a number of differing robots are submitted to tests. Those which perform best are used as a model to create a subsequent “generation” of robots.
Another method is developmental robotics, which tracks changes and development within a single robot in the areas of problem-solving and other functions. Another new type of robot is just recently introduced which acts both as a smartphone and robot and is named RoboHon. As robots become more advanced, eventually there may be a standard computer operating system designed mainly for robots.
Robot Operating System (ROS) is an open-source software set of programs being developed at Stanford University, the Massachusetts Institute of Technology, and the Technical University of Munich, Germany, among others. ROS provides ways to program a robot’s navigation and limbs regardless of the specific hardware involved. It also provides high-level commands for items like image recognition and even opening doors.
When ROS boots up on a robot’s computer, it would obtain data on attributes such as the length and movement of robots’ limbs. It would relay this data to higher-level algorithms. Microsoft is also developing a “Windows for robots” system with its Robotics Developer Studio, which has been available since 2007. Japan hopes to have full-scale commercialization of service robots by 2025. Much technological research in Japan is led by Japanese government agencies, particularly the Trade Ministry.
Many future applications of robotics seem obvious to people, even though they are well beyond the capabilities of robots available at the time of the prediction. As early as 1982 people were confident that someday robots would: 1. Clean parts by removing molding flash 2. Spray paint automobiles with absolutely no human presence 3. Pack things in boxes—for example, orient and nest chocolate candies in candy boxes 4. Make electrical cable harness 5. Load trucks with boxes—a packing problem 6. Handle soft goods, such as garments and shoes 7. Shear sheep 8. Be used as prostheses 9. Cook fast food and work in other service industries 10. Work as a household robot.
Generally such predictions are overly optimistic in timescale. Mobile robots have the capability to move around in their environment and are not fixed to one physical location. An example of a mobile robot that is in common use today is the automated guided vehicle or automatic guided vehicle (AGV). An AGV is a mobile robot that follows markers or wires in the floor, or uses vision or lasers. AGVs are discussed later in this article.
Mobile robots are also found in industry, military and security environments. They also appear as consumer products, for entertainment or to perform certain tasks like vacuum cleaning. Mobile robots are the focus of a great deal of current research and almost every major university has one or more labs that focus on mobile robot research. Mobile robots are usually used in tightly controlled environments such as on assembly lines because they have difficulty responding to unexpected interference.
Because of this most humans rarely encounter robots. However domestic robots for cleaning and maintenance are increasingly common in and around homes in developed countries. Robots can also be found in military applications. Industrial robots usually consist of a jointed arm (multi-linked manipulator) and an end effector that is attached to a fixed surface. One of the most common type of end effector is a gripper assembly.
The International Organization for Standardization gives a definition of a manipulating industrial robot in ISO 8373: “an automatically controlled, reprogrammable, multipurpose, manipulator programmable in three or more axes, which may be either fixed in place or mobile for use in industrial automation applications.” This definition is used by the International Federation of Robotics, the European Robotics Research Network (EURON) and many national standards committees.
The industrial robots in food and drink processing plants are used for tasks such as feeding machines, packaging, and palletizing, which have replaced many manual, physical tasks. The complexity of digital skills required by workers varies depending on the level of automation and the specific tasks involved. Most commonly industrial robots are fixed robotic arms and manipulators used primarily for production and distribution of goods. The term “service robot” is less well-defined. The
International Federation of Robotics has proposed a tentative definition, “A service robot is a robot which operates semi- or fully autonomously to perform services useful to the well-being of humans and equipment, excluding manufacturing operations.” Modular robots are a new breed of robots that are designed to increase the use of robots by modularizing their architecture. The functionality and effectiveness of a modular robot is easier to increase compared to conventional robots.
These robots are composed of a single type of identical, several different identical module types, or similarly shaped modules, which vary in size. Their architectural structure allows hyper-redundancy for modular robots, as they can be designed with more than 8 degrees of freedom (DOF). Creating the programming, inverse kinematics and dynamics for modular robots is more complex than with traditional robots. Modular robots may be composed of L-shaped modules, cubic modules, and U and H-shaped modules.
ANAT technology, an early modular robotic technology patented by Robotics Design Inc., allows the creation of modular robots from U- and H-shaped modules that connect in a chain, and are used to form heterogeneous and homogenous modular robot systems. These “ANAT robots” can be designed with “n” DOF as each module is a complete motorized robotic system that folds relatively to the modules connected before and after it in its chain, and therefore a single module allows one degree of freedom.
The more modules that are connected to one another, the more degrees of freedom it will have. L-shaped modules can also be designed in a chain, and must become increasingly smaller as the size of the chain increases, as payloads attached to the end of the chain place a greater strain on modules that are further from the base. ANAT H-shaped modules do not suffer from this problem, as their design allows a modular robot to distribute pressure and impacts evenly amongst other attached modules, and therefore payload-carrying capacity does not decrease as the length of the arm increases.
Modular robots can be manually or self-reconfigured to form a different robot, that may perform different applications. Because modular robots of the same architecture type are composed of modules that compose different modular robots, a snake-arm robot can combine with another to form a dual or quadra-arm robot, or can split into several mobile robots, and mobile robots can split into multiple smaller ones, or combine with others into a larger or different one.
This allows a single modular robot the ability to be fully specialized in a single task, as well as the capacity to be specialized to perform multiple different tasks. Modular robotic technology is currently being applied in hybrid transportation, industrial automation, duct cleaning and handling. Many research centres and universities have also studied this technology, and have developed prototypes. Roughly half of all the robots in the world are in Asia, 32% in Europe, and 16% in North America, 1% in Australasia and 1% in Africa. 40% of all the robots in the world are in Japan, making Japan the country with the highest number of robots.
Leave a Reply