Getty
Croissants are the ultimate overachievers of the culinary world. They could have just been bread—yet another bland dinner roll in a floury lineup—but no. They had to show off, ascending the gluten pyramid to become flaky, buttery, delicious works of art. But they’re also the most challenging of all the breads to eat. After all, who hasn’t taken a big bite only to have the confection explode into a confetti of flakes? They’re the only food that somehow makes you feel both fancy and like you need a napkin intervention at the same time….Continue reading….
Source: Readers Digest
.
Critics:
Uncooked croissant dough can also be wrapped around any praline, almond paste, or chocolate before it is baked (in the last case, it becomes like pain au chocolat, which has a different, non-crescent, shape), or sliced to include sweet or savoury fillings. It may be flavored with dried fruit such as sultanas or raisins, or other fruits such as apples. In France and Spain, croissants are generally sold without filling and eaten without added butter, but sometimes with almond filling.
In the United States, sweet fillings or toppings are sometimes used, and warm croissants may be filled with ham and cheese, or feta cheese and spinach. In the Levant, croissants are sold plain or filled with chocolate, cheese, almonds, or zaatar. In Germany, croissants are sometimes filled with Nutella or persipan; in southern Germany, there is also a popular variety of a croissant glazed with lye (Laugencroissant). In the German-speaking part of Switzerland, the croissant is typically called a Gipfeli; this usually has a crisper crust and is less buttery than the French-style croissant.
Gluten proteins affect the water absorption and viscoelastic properties of the predough. The role of proteins can be divided into two stages of dough formation: hydration and deformation. In the hydration stage, gluten proteins absorb water up to two times their own weight. In the deformation or kneading stage, the action of mixing causes the gluten to undergo a series of polymerization and depolymerization reactions, forming a viscoelastic network.
Hydrated glutenin proteins in particular help form a polymeric protein network that makes the dough more cohesive. On the other hand, hydrated gliadin proteins do not directly form the network, but do act as plasticizers of the glutenin network, thus imparting fluidity to the dough’s viscosity. Starch also affects the viscosity of predough. At room temperature and in a sufficient amount of water, intact starch granules can absorb water up to 50% of their own dry weight, causing them to swell to a limited extent.
The slightly swollen granules are found in the spaces between the gluten network, thus contributing to the consistency of the dough. The granules may not be intact, as the process of milling wheat into flour damages some of the starch granules. Given that damaged starch granules have the capacity to absorb around three times as much water as undamaged starch, the use of flour with higher levels of damaged starch requires the addition of more water to achieve optimal dough development and consistency.
Water content affects the mechanical behavior of predough. As previously discussed, water is absorbed by gluten and starch granules to increase the viscosity of the dough. The temperature of the water is also important as it determines the temperature of the predough. In order to facilitate processing, cold water should be used for two main reasons. First, chilled water provides a desirable environment for gluten development, as the temperature at which mixing occurs impacts the dough’s hydration time, consistency, and required amount of mixing energy.
Secondly, cold water is comparable to the temperature of the roll-in fat to be added later, which better facilitates the latter’s incorporation. In-dough fat affects the texture and lift of predough. Although higher levels of dough fat may lower dough lift during baking, it also correlates with a softer end product. As such, the main function of in-dough fat is to produce a desirable softness in the final croissant.
The effect of gluten proteins during cooling and storage is still unclear. It is possible that gluten proteins influence croissant firming through the loss of plasticizing water, which increases the stiffness of the gluten network. Starch plays a major role in the degradation of croissants during storage. Amylopectin retrogradation occurs over several days to weeks, as amorphous amylopectin chains are realigned into a more crystalline structure.
The transformation of the starch causes undesirable firmness in the croissant. Additionally, the formation of the crystal structure of amylopectin requires the incorporation of water. Starch retrogradation actively draws water from the amorphous gluten network and some of the amorphous starch fraction, which reduces the plasticity of both. Water migration influences the quality of stored croissants through two mechanisms. First, as previously stated, water redistributes from gluten to starch as a result of starch retrogradation.
Secondly, during the baking process, a moisture gradient was introduced as a result of heat transfer from the oven to the croissant. In fresh croissants, there is high moisture content on the inside and low moisture content on the outside. During storage, this moisture gradient induces water migration from the inside to the outer crust. On a molecular level, water is lost from the amorphous starch fraction and gluten network. At the same time, water diffuses from the outer crust to the environment, which has less moisture.
The result of this redistribution of water is a firming up of the croissant, caused by a decrease in starch plasticity and an increase in gluten network rigidity. Due to the presence of large pores in croissants, moisture is lost to the environment at a faster rate than bread products. As such, croissants generally become harder in texture at a faster rate than breads.
Croissant, a social media cross-posting app
Unlock culinary wonders with IHG One Rewards Dining Privileges
Leave a Reply