Saturday, December 28, 2024

7 Types of Renewable Energy: The Future of Energy

Getty

Renewable energy is energy that has been derived from earth’s natural resources that are not finite or exhaustible, such as wind and sunlight. Renewable energy is an alternative to the traditional energy that relies on fossil fuels, and it tends to be much  less harmful to the environment. Ther are 7 Types of Renewable Energy: Solar energy is derived by capturing radiant energy from sunlight and converting it into heat, electricity, or hot water. Photovoltaic (PV) systems can convert direct sunlight into electricity through the use of solar cells.….Story continues..

By justenergy.com

Source: Just Energy

.

 

Critics:

Renewable energy stands in contrast to fossil fuels, which are being used far more quickly than they are being replenished. Renewable energy resources and significant opportunities for energy efficiency exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. 

Rapid deployment of renewable energy and energy efficiency, and technological diversification of energy sources, would result in significant energy security and economic benefits. Solar and wind power have got much cheaper. In some cases it will be cheaper to transition to these sources as opposed to continuing to use the current, inefficient, fossil fuels.

In addition, electrification with renewable energy is more efficient and therefore leads to significant reductions in primary energy requirements. It would also reduce environmental pollution such as air pollution caused by the burning of fossil fuels, and improve public health, reduce premature mortalities due to pollution and save associated health costs that could amount to trillions of dollars annually.

Multiple analyses of decarbonization strategies have found that quantified health benefits can significantly offset the costs of implementing these strategies. Climate change concerns, coupled with the continuing fall in the costs of some renewable energy equipment, such as wind turbines and solar panels, are driving increased use of renewables.

New government spending, regulation and policies helped the industry weather the global financial crisis better than many other sectors. As of 2019, however, according to the International Renewable Energy Agency, renewables overall share in the energy mix (including power, heat and transport) needs to grow six times faster, in order to keep the rise in average global temperatures “well below” 2.0 °C (3.6 °F) during the present century, compared to pre-industrial levels.

A household’s solar panels, and batteries if they have them, can often either be used for just that household or if connected to an electrical grid can be aggregated with millions of others. Over 44 million households use biogas made in household-scale digesters for lighting and/or cooking, and more than 166 million households rely on a new generation of more-efficient biomass cookstoves.

 According to the research, a nation must reach a certain point in its growth before it can take use of more renewable energy. In our words, its addition changed how crucial input factors (labor and capital) connect to one another, lowering their overall elasticity and increasing the apparent economies of scale.

United Nations’ eighth Secretary-General Ban Ki-moon has said that renewable energy has the ability to lift the poorest nations to new levels of prosperity. At the national level, at least 30 nations around the world already have renewable energy contributing more than 20% of energy supply. Although many countries have various policy targets for longer-term shares of renewable energy these tend to be only for the power sector,including a 40% target of all electricity generated for the European Union by 2030.

Renewable energy often displaces conventional fuels in four areas: electricity generation, hot water/space heating, transportation, and rural (off-grid) energy services. More than a quarter of electricity is generated from renewables as of 2021. One of the efforts to decarbonize transportation is the increased use of electric vehicles (EVs). Despite that and the use of biofuels, such as biojet, less than 4% of transport energy is from renewables.

Occasionally hydrogen fuel cells are used for heavy transport. Solar water heating makes an important contribution to renewable heat in many countries, most notably in China, which now has 70% of the global total (180  GWth). Most of these systems are installed on multi-family apartment buildings and meet a portion of the hot water needs of an estimated 50–60 million households in China.

Worldwide, total installed solar water heating systems meet a portion of the water heating needs of over 70 million households. Heat pumps provide both heating and cooling, and also flatten the electric demand curve and are thus an increasing priority. Renewable thermal energy is also growing rapidly. About 10% of heating and cooling energy is from renewables. Solar energy, radiant light and heat from the sun, is harnessed using a range of ever-evolving technologies such as solar heating, photovoltaics, concentrated solar power (CSP), concentrator photovoltaics (CPV), solar architecture and artificial photosynthesis.

Most new renewable energy is solar. Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert, and distribute solar energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air. 

Active solar technologies encompass solar thermal energy, using solar collectors for heating, and solar power, converting sunlight into electricity either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP).

A photovoltaic system converts light into electrical direct current (DC) by taking advantage of the photoelectric effect. Solar PV has turned into a multi-billion, fast-growing industry, continues to improve its cost-effectiveness, and has the most potential of any renewable technologies together with CSP. Concentrated solar power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. 

Commercial concentrated solar power plants were first developed in the 1980s. CSP-Stirling has by far the highest efficiency among all solar energy technologies.

In 2011, the International Energy Agency said that “the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating climate change, and keep fossil fuel prices lower than otherwise. 

These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared”. Solar power accounts for 505 GW annually, which is about 2% of the world’s electricity. Solar energy can be harnessed anywhere that receives sunlight; however, the amount of solar energy that can be harnessed for electricity generation is influenced by weather conditions, geographic location and time of day.

According to chapter 6 of the IPCC 2022 climate mitigation report, the global potential of direct solar energy far exceeds that of any other renewable energy resource. It is well beyond the total amount of energy needed in order to support mitigation over the current century. Australia has the largest proportion of solar electricity in the world, supplying 9.9% of the country’s electrical demand in 2020. 

More than 30 per cent of Australian households now have rooftop solar PV, with a combined capacity exceeding 11 GW. There are, however, environmental implications of scaling up solar energy. In particular, the demand for raw materials such as aluminum poses concerns over the carbon footprint that will result from harvesting raw materials needed to implement solar energy.

In the last half hour
In the last 2 hours
In the last 4 hours
In the last 6 hours
In the last 8 hours
Earlier Today
Yesterday
 
.
.
.
.
.

No comments:

Post a Comment

Selling Courses Is the Big Educational Opportunity With Courserious 2.0

Credit to:  arminhamidian Courserious  is a brand new, revolutionary cloud based eLearning platform that lets you create and sell unlimited ...