Friday, November 1, 2024

Will Better Superconductors Transform the World?

Peter Greenwood for Quanta Magazine

Scientists are pursuing materials that can conduct electricity with perfect efficiency under ambient conditions. In this episode, the physicist Siddharth Shanker Saxena tells co-host Janna Levin about what makes this hunt so difficult and consequential. If superconductors materials that conduct electricity without any resistance worked at temperatures and pressures close to what we would consider normal, they would be world-changing….Story continues….

By: Janna Levin

Source: QuantaMagazine

.

Critics:

A superconductor can be Type I, meaning it has a single critical field, above which all superconductivity is lost and below which the magnetic field is completely expelled from the superconductor; or Type II, meaning it has two critical fields, between which it allows partial penetration of the magnetic field through isolated points. These points are called vortices. Furthermore, in multicomponent superconductors it is possible to have a combination of the two behaviours. In that case the superconductor is of Type-1.5.

A superconductor is conventional if it is driven by electron–phonon interaction and explained by the usual BCS theory or its extension, the Eliashberg theory. Otherwise, it is unconventional. Alternatively, a superconductor is called unconventional if the superconducting order parameter transforms according to a non-trivial irreducible representation of the point group or space group of the system.

A superconductor is generally considered high-temperature if it reaches a superconducting state above a temperature of 30 K (−243.15 °C);[38] as in the initial discovery by Georg Bednorz and K. Alex Müller. It may also reference materials that transition to superconductivity when cooled using liquid nitrogen – that is, at only Tc > 77 K, although this is generally used only to emphasize that liquid nitrogen coolant is sufficient.

Low temperature superconductors refer to materials with a critical temperature below 30 K, and are cooled mainly by liquid helium (Tc > 4.2 K). One exception to this rule is the iron pnictide group of superconductors which display behaviour and properties typical of high-temperature superconductors, yet some of the group have critical temperatures below 30 K.

Superconductor material classes include chemical elements (e.g. mercury or lead), alloys (such as niobium–titanium, germanium–niobium, and niobium nitride), ceramics (YBCO and magnesium diboride), superconducting pnictides (like fluorine-doped LaOFeAs) or organic superconductors (fullerenes and carbon nanotubes; though perhaps these examples should be included among the chemical elements, as they are composed entirely of carbon).

Several physical properties of superconductors vary from material to material, such as the critical temperature, the value of the superconducting gap, the critical magnetic field, and the critical current density at which superconductivity is destroyed. On the other hand, there is a class of properties that are independent of the underlying material. The Meissner effect, the quantization of the magnetic flux or permanent currents, i.e. the state of zero resistance are the most important examples.

The existence of these “universal” properties is rooted in the nature of the broken symmetry of the superconductor and the emergence of off-diagonal long range order. Superconductivity is a thermodynamic phase, and thus possesses certain distinguishing properties which are largely independent of microscopic details. Off diagonal long range order is closely connected to the formation of Cooper pairs.

The simplest method to measure the electrical resistance of a sample of some material is to place it in an electrical circuit in series with a current source I and measure the resulting voltage V across the sample. The resistance of the sample is given by Ohm’s law as R = V / I. If the voltage is zero, this means that the resistance is zero.

Superconductors are also able to maintain a current with no applied voltage whatsoever, a property exploited in superconducting electromagnets such as those found in MRI machines. Experiments have demonstrated that currents in superconducting coils can persist for years without any measurable degradation. Experimental evidence points to a lifetime of at least 100,000 years. Theoretical estimates for the lifetime of a persistent current can exceed the estimated lifetime of the universe, depending on the wire geometry and the temperature.

In practice, currents injected in superconducting coils persisted for 28 years, 7 months, 27 days in a superconducting gravimeter in Belgium, from August 4, 1995 until March 31, 2024. In such instruments, the measurement is based on the monitoring of the levitation of a superconducting niobium sphere with a mass of four grams. In a normal conductor, an electric current may be visualized as a fluid of electrons moving across a heavy ionic lattice.

The electrons are constantly colliding with the ions in the lattice, and during each collision some of the energy carried by the current is absorbed by the lattice and converted into heat, which is essentially the vibrational kinetic energy of the lattice ions. As a result, the energy carried by the current is constantly being dissipated. This is the phenomenon of electrical resistance and Joule heating.

The situation is different in a superconductor. In a conventional superconductor, the electronic fluid cannot be resolved into individual electrons. Instead, it consists of bound pairs of electrons known as Cooper pairs. This pairing is caused by an attractive force between electrons from the exchange of phonons. This pairing is very weak, and small thermal vibrations can fracture the bond.

Due to quantum mechanics, the energy spectrum of this Cooper pair fluid possesses an energy gap, meaning there is a minimum amount of energy ΔE that must be supplied in order to excite the fluid. Therefore, if ΔE is larger than the thermal energy of the lattice, given by kT, where k is the Boltzmann constant and T is the temperature, the fluid will not be scattered by the lattice.

The Cooper pair fluid is thus a superfluid, meaning it can flow without energy dissipation. In the class of superconductors known as type II superconductors, including all known high-temperature superconductors, an extremely low but non-zero resistivity appears at temperatures not too far below the nominal superconducting transition when an electric current is applied in conjunction with a strong magnetic field, which may be caused by the electric current.

This is due to the motion of magnetic vortices in the electronic superfluid, which dissipates some of the energy carried by the current. If the current is sufficiently small, the vortices are stationary, and the resistivity vanishes. The resistance due to this effect is minuscule compared with that of non-superconducting materials, but must be taken into account in sensitive experiments.

However, as the temperature decreases far enough below the nominal superconducting transition, these vortices can become frozen into a disordered but stationary phase known as a “vortex glass”. Below this vortex glass transition temperature, the resistance of the material becomes truly zero.

Today’s Cache | Microsoft announces AI hub; Tesla settles autopilot lawsuit; Physicist faked superconductor discovery dataThe Hindu 17:12 Tue, 09 Apr

Superconducting “Islands” Could Lead to Magnetic MemoryIEEE Spectrum 00:11 Thu, 02 May

No comments:

Post a Comment

Experimental Antibody Drug Prevents and Even Reverses Diabetes Onset

Depositphotos Scientists have developed a promising new drug that could prevent and even reverse the onset of type 1 diabetes. The experimen...