Monday, October 14, 2024

The Misleading Wasteful Way We Measure Gas Mileage Explained

Joe Raedle/Getty Images

Time for a pop quiz. Which of these trades saves more gas: A) Swapping a car that gets 25 miles per gallon (MPG) for one that gets 50 MPG, or B) Replacing a car that gets 10 MPG with one that gets 15 MPG. If you said that A conserves more gas, you’re mistaken. And it’s not even close. Here’s why: In the first scenario, the old vehicle getting 25 MPG uses four gallons of gas to travel 100 miles, while the new one at 50 MPG uses two….Story continues

By : David Zipper

Source: Vox

Source:

Energy efficiency is similar to fuel efficiency but the input is usually in units of energy such as megajoules (MJ), kilowatt-hours (kW·h), kilocalories (kcal) or British thermal units (BTU). The inverse of “energy efficiency” is “energy intensity”, or the amount of input energy required for a unit of output such as MJ/passenger-km (of passenger transport), BTU/ton-mile or kJ/t-km (of freight transport), GJ/t (for production of steel and other materials), BTU/(kW·h) (for electricity generation), or litres/100 km (of vehicle travel).

Litres per 100 km is also a measure of “energy intensity” where the input is measured by the amount of fuel and the output is measured by the distance travelled. For example: Fuel economy in automobiles. Given a heat value of a fuel, it would be trivial to convert from fuel units (such as litres of gasoline) to energy units (such as MJ) and conversely. But there are two problems with comparisons made using energy units:

  • There are two different heat values for any hydrogen-containing fuel which can differ by several percent (see below).
  • When comparing transportation energy costs, it must be remembered that a kilowatt hour of electric energy may require an amount of fuel with heating value of 2 or 3 kilowatt hours to produce it.

The specific energy content of a fuel is the heat energy obtained when a certain quantity is burned (such as a gallon, litre, kilogram). It is sometimes called the heat of combustion. There exists two different values of specific heat energy for the same batch of fuel. One is the high (or gross) heat of combustion and the other is the low (or net) heat of combustion.

The high value is obtained when, after the combustion, the water in the exhaust is in liquid form. For the low value, the exhaust has all the water in vapor form (steam). Since water vapor gives up heat energy when it changes from vapor to liquid, the liquid water value is larger since it includes the latent heat of vaporization of water.

The difference between the high and low values is significant, about 8 or 9%. This accounts for most of the apparent discrepancy in the heat value of gasoline. In the U.S. (and the table) the high heat values have traditionally been used, but in many other countries, the low heat values are commonly used.

The fuel economy of an automobile relates to the distance traveled by a vehicle and the amount of fuel consumed. Consumption can be expressed in terms of the volume of fuel to travel a distance, or the distance traveled per unit volume of fuel consumed. Since fuel consumption of vehicles is a significant factor in air pollution, and since the importation of motor fuel can be a large part of a nation’s foreign trade, many countries impose requirements for fuel economy.

Different methods are used to approximate the actual performance of the vehicle. The energy in fuel is required to overcome various losses (wind resistance, tire drag, and others) encountered while propelling the vehicle, and in providing power to vehicle systems such as ignition or air conditioning. Various strategies can be employed to reduce losses at each of the conversions between the chemical energy in the fuel and the kinetic energy of the vehicle.

Driver behavior can affect fuel economy; maneuvers such as sudden acceleration and heavy braking waste energy. Electric cars do not directly burn fuel, and so do not have fuel economy per se, but equivalence measures, such as miles per gallon gasoline equivalent have been created to attempt to compare them.The most efficient machines for converting energy to rotary motion are electric motors, as used in electric vehicles.

However, electricity is not a primary energy source so the efficiency of the electricity production has also to be taken into account. Railway trains can be powered using electricity, delivered through an additional running rail, overhead catenary system or by on-board generators used in diesel-electric locomotives as common on the US and UK rail networks. Pollution produced from centralised generation of electricity is emitted at a distant power station, rather than “on site”.

Pollution can be reduced by using more railway electrification and low carbon power for electricity. Some railways, such as the French SNCF and Swiss federal railways derive most, if not 100% of their power, from hydroelectric or nuclear power stations, therefore atmospheric pollution from their rail networks is very low.

This was reflected in a study by AEA Technology between a Eurostar train and airline journeys between London and Paris, which showed the trains on average emitting 10 times less CO2, per passenger, than planes, helped in part by French nuclear generation.

In the last 15 minutes
In the last half hour
In the last hour
In the last 2 hours
In the last 4 hours
In the last 6 hours
In the last 8 hours
Earlier Today

No comments:

Post a Comment

WriterArc A Birth of a Highly Professional Copywriter

Credit to:  arminhamidian Writing any type of material requires years of experience, especially if you want to amaze the globe, the sales ma...