Monday, July 29, 2024

How To Use Smart Tech To Save On Your Light Bill

Smart Home Solver/YouTube
If you are constantly fighting with family members or roommates about turning lights off when they leave a room, automation can help. This isn’t advanced stuff, either: You simply use sensors to detect when someone is or is not in the room. When there isn’t activity, the lights turn off.

To start, you need sensors, and there are two types you should look at. The first is a motion sensor, which is exactly what it sounds like. The second is newer—a presence sensor. A presence sensor can tell if you’re just chilling in the room, rather than moving around in it. If you’ve been sitting quietly reading or watching TV, the lights shouldn’t go out on you...Story continues….

By: Amanda Blum

Source: How to Use Smart Tech to Save on Your Light Bill | Lifehacker

.

Critics:

User habits significantly impact energy demand; thus, providing recommendations for improving user habits contributes to energy conservation. Micro-moments are essential in realizing energy consumption patterns and are identified using a variety of sensing units positioned in prominent areas across the home.

The micro-moment is an event that changes the state of the appliance from inactive to active and helps in building users’ energy consumption profiles according to their activities. Energy conservation can be achieved through user habits by following energy-saving recommendations at micro-moments. Unnecessary energy usage can be decreased by selecting a suitable schedule for appliance operation. Creating an effective scheduling system requires an understanding of user habits regarding appliances.

Many techniques for energy conservation comprise off-peak scheduling, which means operating an appliance in a low-price energy hour. This schedule can be achieved after user habits regarding appliance use are understood. Most energy providers divide the energy tariff into high and low-price hours; therefore, scheduling an appliance to work an off-peak hour will significantly reduce electricity bills.

User activity detection leads to the precise detection of appliances required for an activity. If an appliance is active but not required for a user’s current activity, it wastes energy and can be turned off to conserve energy. The precise identification of user activities is necessary to achieve this method of energy conservation. Energy conservation measures have primarily focused on technological innovations to improve efficiencies and financial incentives with theoretical explanations obtained from the mentioned analytical traditions.

Existing buildings can improve energy efficiency by changing structural maintenance materials, adjusting the composition of air conditioning systems, selecting energy-saving equipment, and formulating subsidy policies. These measures can improve users’ thermal comfort and reduce buildings’ environmental impact. The selection of combinatorial optimization schemes that contain measures to guide and restrict users’ behavior in addition to carrying out demand-side management can dynamically adjust energy consumption.

At the same time, economic means should enable users to change their behavior and achieve a low-carbon life. Combination optimization and pricing incentives reduce building energy consumption and carbon emissions and reduce users’ costs. Energy monitoring through energy audits can achieve energy efficiency in existing buildings. An energy audit is an inspection and analysis of energy use and flows for energy conservation in a structure, process, or system intending to reduce energy input without negatively affecting output.

Energy audits can determine specific opportunities for energy conservation and efficiency measures as well as determine cost-effective strategies. Training professionals typically accomplish this and can be part of some national programs discussed above. The recent development of smartphone apps enables homeowners to complete relatively sophisticated energy audits themselves.

For instance, smart thermostats can connect to standard HVAC systems to maintain energy-efficient indoor temperatures. In addition, data loggers can also be installed to monitor the interior temperature and humidity levels to provide a more precise understanding of the conditions. If the data gathered is compared with the users’ perceptions of comfort, more fine-tuning of the interiors can be implemented (e.g., increasing the temperature where A.C. is used to prevent over-cooling).

Building technologies and smart meters can allow commercial and residential energy users to visualize the impact their energy use can have in their workplaces or homes. Advanced real-time energy metering can help people save energy through their actions. Another approach towards energy conservation is the implementation of E.C.M.s in commercial buildings, which often employ Energy Service Companies (ESCOs) experienced in energy performance contracting.

This industry has been around since the 1970s and is more prevalent than ever today. The US-based organization E.V.O. (Efficiency Valuation Organization) has created a set of guidelines for ESCOs to adhere to in evaluating the savings achieved by E.C.M.s. These guidelines are called the International Performance Measurement and Verification Protocol(IPMVP).

Energy efficiency can also be achieved by upgrading certain aspects of existing buildings. Firstly, making thermal improvements by adding insulation to crawl spaces and ensuring no leaks achieves an efficient building envelope, reducing the need for mechanical systems to heat and cool the space. High-performance insulation is also supported by adding double/triple-glazed windows to minimize thermal heat transmission.

Minor upgrades in existing buildings include changing mixers to low flow greatly aids in water conservation, changing light bulbs to LED lights results in 70-90% less energy consumption than a standard incandescent or C.F.L. bulb, changing inefficient appliances with Energy Star-rated appliances will consume less energy, and finally adding vegetation in the landscape surrounding the building to function as a shading element. A window windcatcher can reduce the total energy use of a building by 23.3%.

Energy conservation through users’ behaviors requires understanding household occupants’ lifestyle, social, and behavioral factors in analyzing energy consumption. This involves one-time investments in energy efficiency, such as purchasing new energy-efficient appliances or upgrading the building insulation without curtailing economic utility or the level of energy services, and energy curtailment behaviors which are theorized to be driven more by social-psychological factors and environmental concerns in comparison to the energy efficiency behaviors.

Replacing existing appliances with newer and more efficient ones leads to energy efficiency as less energy is wasted throughout. Overall, energy efficiency behaviors are identified more with one-time, cost-incurring investments in efficient appliances and retrofits, while energy curtailment behaviors include repetitive, low-cost energy-saving efforts.

To identify and optimize residential energy use, conventional and behavioral economics, technology adoption theory and attitude-based decision-making, social and environmental psychology, and sociology must be analyzed. The techno-economic and psychological literature analysis focuses on the individual attitude, behavior, and choice/context/external conditions. In contrast, the sociological literature relies more on the energy consumption practices shaped by the social, cultural, and economic factors in a dynamic setting.

Homeowners implementing ECMs in their residential buildings often start with an energy audit. This is a way homeowners look at what areas of their homes are using, and possibly losing energy. Residential energy auditors are accredited by the Building Performance Institute (BPI) or the Residential Energy Services Network (RESNET). Homeowners can hire a professional or do it themselves or use a smartphone to help do an audit.

Energy conservation measures are often combined into larger guaranteed Energy Savings Performance Contracts to maximize energy savings while minimizing disruption to building occupants by coordinating renovations. Some ECMs cost less to implement yet return higher energy savings. Traditionally, lighting projects were a good example of “low hanging fruit” that could be used to drive implementation of more substantial upgrades to HVAC systems in large facilities.

Smaller buildings might combine window replacement with modern insulation using advanced building foams to improve energy for performance. Energy dashboard projectsare a new kind of ECM that relies on the behavioral change of building occupants to save energy. When implemented as part of a program, case studies, such as that for the DC Schools, report energy savings up 30%. Under the right circumstances, open energy dashboards can even be implemented for free to improve upon these savings even more.

Consumers are often poorly informed of the savings of energy-efficient products. A prominent example of this is the energy savings that can be made by replacing an incandescent light bulb with a more modern alternative. When purchasing light bulbs, many consumers opt for cheap incandescent bulbs, failing to take into account their higher energy costs and lower lifespans when compared to modern compact fluorescent and LED bulbs.

Although these energy-efficient alternatives have a higher upfront cost, their long lifespan and low energy use can save consumers a considerable amount of money. The price of LED bulbs has also been steadily decreasing in the past five years due to improvements in semiconductor technology. Many LED bulbs on the market qualify for utility rebates that further reduce the price of the purchase to the consumer. Estimates by the U.S. Department of Energy state that widespread adoption of LED lighting over the next 20 years could result in about $265 billion worth of savings in United States energy costs.

The research one must put into conserving energy is often too time-consuming and costly for the average consumer when there are cheaper products and technology available using today’s fossil fuels. Some governments and NGOs are attempting to reduce this complexity with Eco-labels that make differences in energy efficiency easy to research while shopping.

To provide the kind of information and support people need to invest money, time and effort in energy conservation, it is important to understand and link to people’s topical concerns. For instance, some retailers argue that bright lighting stimulates purchasing. However, health studies have demonstrated that headache, stress, blood pressure, fatigue and worker error all generally increase with the common over-illumination present in many workplace and retail settings.

It has been shown that natural daylighting increases productivity levels of workers, while reducing energy consumption.

Energy saving plans required for Wellcome grant applications Times Higher Education 05:11 

Yesterday
Tuesday
Monday
Sunday
Friday

No comments:

Post a Comment

5 Habits of Successful People 

Shutterstock.com We’re all creatures of habit: We get up at the same time, go to work, have lunch at a certain time, go home at night and do...