Friday, July 5, 2024

7 Types of Renewable Energy: The Future of Energy



Getty

Renewable energy is energy that has been derived from earth’s natural resources that are not finite or exhaustible, such as wind and sunlight. Renewable energy is an alternative to the traditional energy that relies on fossil fuels, and it tends to be much  less harmful to the environment. Ther are 7 Types of Renewable Energy:

Solar energy is derived by capturing radiant energy from sunlight and converting it into heat, electricity, or hot water. Photovoltaic (PV) systems can convert direct sunlight into electricity through the use of solar cells.One of the benefits of solar energy is that sunlight is functionally endless.

With the technology to harvest it, there is a limitless supply of solar energy, meaning it could render fossil fuels obsolete. Relying on solar energy rather than fossil fuels also helps us improve public health and environmental conditions.….Story continues..

By justenergy.com

Source: 7 Types of Renewable Energy: The Future of Energy

.

Critics:

Renewable energy stands in contrast to fossil fuels, which are being used far more quickly than they are being replenished. Renewable energy resources and significant opportunities for energy efficiency exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. 

Rapid deployment of renewable energy and energy efficiency, and technological diversification of energy sources, would result in significant energy security and economic benefits. Solar and wind power have got much cheaper. In some cases it will be cheaper to transition to these sources as opposed to continuing to use the current, inefficient, fossil fuels.

In addition, electrification with renewable energy is more efficient and therefore leads to significant reductions in primary energy requirements. It would also reduce environmental pollution such as air pollution caused by the burning of fossil fuels, and improve public health, reduce premature mortalities due to pollution and save associated health costs that could amount to trillions of dollars annually.

Multiple analyses of decarbonization strategies have found that quantified health benefits can significantly offset the costs of implementing these strategies. Climate change concerns, coupled with the continuing fall in the costs of some renewable energy equipment, such as wind turbines and solar panels, are driving increased use of renewables.

New government spending, regulation and policies helped the industry weather the global financial crisis better than many other sectors. As of 2019, however, according to the International Renewable Energy Agency, renewables overall share in the energy mix (including power, heat and transport) needs to grow six times faster, in order to keep the rise in average global temperatures “well below” 2.0 °C (3.6 °F) during the present century, compared to pre-industrial levels.

A household’s solar panels, and batteries if they have them, can often either be used for just that household or if connected to an electrical grid can be aggregated with millions of others. Over 44 million households use biogas made in household-scale digesters for lighting and/or cooking, and more than 166 million households rely on a new generation of more-efficient biomass cookstoves.

 According to the research, a nation must reach a certain point in its growth before it can take use of more renewable energy. In our words, its addition changed how crucial input factors (labor and capital) connect to one another, lowering their overall elasticity and increasing the apparent economies of scale.

 United Nations’ eighth Secretary-General Ban Ki-moon has said that renewable energy has the ability to lift the poorest nations to new levels of prosperity. At the national level, at least 30 nations around the world already have renewable energy contributing more than 20% of energy supply. Although many countries have various policy targets for longer-term shares of renewable energy these tend to be only for the power sector,including a 40% target of all electricity generated for the European Union by 2030.

Renewable energy often displaces conventional fuels in four areas: electricity generationhot water/space heatingtransportation, and rural (off-grid) energy services. More than a quarter of electricity is generated from renewables as of 2021. One of the efforts to decarbonize transportation is the increased use of electric vehicles (EVs). Despite that and the use of biofuels, such as biojet, less than 4% of transport energy is from renewables.

 Occasionally hydrogen fuel cells are used for heavy transport. Solar water heating makes an important contribution to renewable heat in many countries, most notably in China, which now has 70% of the global total (180  GWth). Most of these systems are installed on multi-family apartment buildings and meet a portion of the hot water needs of an estimated 50–60 million households in China.

 

Worldwide, total installed solar water heating systems meet a portion of the water heating needs of over 70 million households. Heat pumps provide both heating and cooling, and also flatten the electric demand curve and are thus an increasing priority. Renewable thermal energy is also growing rapidly. About 10% of heating and cooling energy is from renewables. Solar energy, radiant light and heat from the sun, is harnessed using a range of ever-evolving technologies such as solar heatingphotovoltaicsconcentrated solar power (CSP), concentrator photovoltaics (CPV), solar architecture and artificial photosynthesis.

Most new renewable energy is solar. Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert, and distribute solar energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air

Active solar technologies encompass solar thermal energy, using solar collectors for heating, and solar power, converting sunlight into electricity either directly using photovoltaics (PV), or indirectly using concentrated solar power (CSP).

photovoltaic system converts light into electrical direct current (DC) by taking advantage of the photoelectric effect. Solar PV has turned into a multi-billion, fast-growing industry, continues to improve its cost-effectiveness, and has the most potential of any renewable technologies together with CSP. Concentrated solar power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. 

Commercial concentrated solar power plants were first developed in the 1980s. CSP-Stirling has by far the highest efficiency among all solar energy technologies.

In 2011, the International Energy Agency said that “the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating climate change, and keep fossil fuel prices lower than otherwise. 

These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared”. Solar power accounts for 505 GW annually, which is about 2% of the world’s electricity. Solar energy can be harnessed anywhere that receives sunlight; however, the amount of solar energy that can be harnessed for electricity generation is influenced by weather conditions, geographic location and time of day.

According to chapter 6 of the IPCC 2022 climate mitigation report, the global potential of direct solar energy far exceeds that of any other renewable energy resource. It is well beyond the total amount of energy needed in order to support mitigation over the current century. Australia has the largest proportion of solar electricity in the world, supplying 9.9% of the country’s electrical demand in 2020. 

More than 30 per cent of Australian households now have rooftop solar PV, with a combined capacity exceeding 11 GW. There are, however, environmental implications of scaling up solar energy. In particular, the demand for raw materials such as aluminum poses concerns over the carbon footprint that will result from harvesting raw materials needed to implement solar energy.

 “Electricity production by source, World”. Our World in Data, crediting Ember. Archived from the original on 2 October 2023. OWID credits “Source: Ember’s Yearly Electricity Data; Ember’s European Electricity Review; Energy Institute Statistical Review of World Energy”.

^ Owusu, Phebe Asantewaa; Asumadu-Sarkodie, Samuel (2016). “A review of renewable energy sources, sustainability issues and climate change mitigation”. Cogent Engineering. 3 (1): 1167990. doi:10.1080/23311916.2016.1167990.

^ Ellabban, Omar; Abu-Rub, Haitham; Blaabjerg, Frede (2014). “Renewable energy resources: Current status, future prospects and their enabling technology”. Renewable and Sustainable Energy Reviews39: 748–764 [749]. doi:10.1016/j.rser.2014.07.113.

^ Timperly, Jocelyn (23 February 2017). “Biomass subsidies ‘not fit for purpose’, says Chatham House”. Carbon Brief Ltd © 2020 – Company No. 07222041. Archived from the original on 6 November 2020. Retrieved 31 October 2020.

^ Harvey, Chelsea; Heikkinen, Niina (23 March 2018). “Congress Says Biomass Is Carbon Neutral but Scientists Disagree – Using wood as fuel source could actually increase CO2 emissions”. Scientific American. Archived from the original on 1 November 2020. Retrieved 31 October 2020.

^ Alazraque-Cherni, Judith (1 April 2008). “Renewable Energy for Rural Sustainability in Developing Countries”. Bulletin of Science, Technology & Society. 28 (2): 105–114. doi:10.1177/0270467607313956S2CID 67817602Archived from the original on 19 March 2021. Retrieved 2 December 2020.

^ World Energy Assessment (2001). Renewable energy technologies Archived 9 June 2007 at the Wayback Machine, p. 221.

^ Armaroli, NicolaBalzani, Vincenzo (2011). “Towards an electricity-powered world”. Energy and Environmental Science4 (9): 3193–3222. doi:10.1039/c1ee01249e.

^ Armaroli, Nicola; Balzani, Vincenzo (2016). “Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition”. Chemistry – A European Journal22 (1): 32–57. doi:10.1002/chem.201503580PMID 26584653.

^ “Renewables 2022”. Global Status Report (renewable energies): 44. 14 June 2019. Retrieved 5 September 2022.

^ REN21 Renewables Global Status Report 2021.

^ “Renewables – Global Energy Review 2021 – Analysis”. IEA. Archived from the original on 23 November 2021. Retrieved 22 November 2021.

^ “Renewable Energy and Jobs – Annual Review 2020”. irena.org. 29 September 2020. Archived from the original on 6 December 2020. Retrieved 2 December 2020.

^ “Global renewable energy trends”. Deloitte Insights. Archived from the original on 29 January 2019. Retrieved 28 January 2019.

^ “Renewable Energy Now Accounts for a Third of Global Power Capacity”. irena.org. 2 April 2019. Archived from the original on 2 April 2019. Retrieved 2 December 2020.

^ IEA (2020). Renewables 2020 Analysis and forecast to 2025 (Report). p. 12. Archived from the original on 26 April 2021. Retrieved 27 April 2021.

^ Ritchie, Hannah; Roser, Max; Rosado, Pablo (28 November 2020). “Energy”. Our World in Data.

^ Sensiba, Jennifer (28 October 2021). “Some Good News: 10 Countries Generate Almost 100% Renewable Electricity”. CleanTechnica. Archived from the original on 17 November 2021. Retrieved 22 November 2021.

Jump up to:a b c REN21 Renewables Global Futures Report 2017.

Jump up to:a b “Net Zero by 2050 – Analysis”. IEA. Retrieved 19 March 2023.

^ Bogdanov, Dmitrii; Gulagi, Ashish; Fasihi, Mahdi; Breyer, Christian (1 February 2021). “Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination”. Applied Energy. 283: 116273. doi:10.1016/j.apenergy.2020.116273ISSN 0306-2619.

^ Teske, Sven, ed. (2019). Achieving the Paris Climate Agreement Goalsdoi:10.1007/978-3-030-05843-2ISBN 978-3-030-05842-5S2CID 198078901.

^ Jacobson, Mark Z.; von Krauland, Anna-Katharina; Coughlin, Stephen J.; Dukas, Emily; Nelson, Alexander J. H.; Palmer, Frances C.; Rasmussen, Kylie R. (2022). “Low-cost solutions to global warming, air pollution, and energy insecurity for 145 countries”. Energy & Environmental Science. 15 (8): 3343–3359. doi:10.1039/D2EE00722CISSN 1754-5692S2CID 250126767.

Jump up to:a b International Energy Agency (2012). “Energy Technology Perspectives 2012”Archived from the original on 28 May 2020. Retrieved 2 December 2020.

^ Timperley, Jocelyn (20 October 2021). “Why fossil fuel subsidies are so hard to kill”. Nature. 598 (7881): 403–405. Bibcode:2021Natur.598..403Tdoi:10.1038/d41586-021-02847-2PMID 34671143S2CID 239052649.

Jump up to:a b c “Global Trends in Sustainable Energy Investment 2007: Analysis of Trends and Issues in the Financing of Renewable Energy and Energy Efficiency in OECD and Developing Countries” (PDF). unep.org. United Nations Environment Programme. 2007. p. 3. Archived (PDF) from the original on 4 March 2016. Retrieved 13 October 2014.

^ Sütterlin, B.; Siegrist, Michael (2017). “Public acceptance of renewable energy technologies from an abstract versus concrete perspective and the positive imagery of solar power”. Energy Policy. 106: 356–366. doi:10.1016/j.enpol.2017.03.061.

^ “Executive summary – Renewables 2022 – Analysis”. IEA. Retrieved 13 March 2023Our accelerated case shows global renewable capacity can expand by an additional 25% compared with the main forecast if countries address policy, regulatory, permitting and financing challenges. …… This faster increase would significantly narrow the gap on the amount of renewable electricity growth that is needed in a pathway to net zero emissions by 2050.

^ Friedlingstein, Pierre; Jones, Matthew W.; O’Sullivan, Michael; Andrew, Robbie M.; Hauck, Judith; Peters, Glen P.; Peters, Wouter; Pongratz, Julia; Sitch, Stephen; Le Quéré, Corinne; Bakker, Dorothee C. E. (2019). “Global Carbon Budget 2019”. Earth System Science Data. 11 (4): 1783–1838. Bibcode:2019ESSD…11.1783Fdoi:10.5194/essd-11-1783-2019ISSN 1866-3508Archived from the original on 6 May 2021. Retrieved 15 February 2021.

^ IEA. Renewable Energy… … into the Mainstream (PDF). IEA. 2002. p. 9. Archived (PDF) from the original on 19 March 2021. Retrieved 9 December 2020.

^ “Climate Change 2022: Mitigation of Climate Change” (PDF). Intergovernmental Panel on Climate Change. 4 April 2022. Archived from the original (PDF) on 7 August 2022. Retrieved 4 April 2022.

^ Volker Quaschning, Regenerative Energiesysteme. Technologie – Berechnung – Simulation. 8th. Edition. Hanser (Munich) 2013, p. 49.

^ Jacobson, Mark Z.; Delucchi, Mark A.; Bazouin, Guillaume; Bauer, Zack A. F.; Heavey, Christa C.; Fisher, Emma; Morris, Sean B.; Piekutowski, Diniana J. Y.; Vencill, Taylor A.; Yeskoo, Tim W. (2015). “100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States”. Energy & Environmental Science. 8 (7): 2093–2117. doi:10.1039/C5EE01283JISSN 1754-5692.

 Scovronick, Noah; Budolfson, Mark; Dennig, Francis; Errickson, Frank; Fleurbaey, Marc; Peng, Wei; Socolow, Robert H.; Spears, Dean; Wagner, Fabian (7 May 2019). “The impact of human health co-benefits on evaluations of global climate policy”. Nature Communications. 10 (1): 2095. Bibcode:2019NatCo..10.2095Sdoi:10.1038/s41467-019-09499-xISSN 2041-1723PMC 6504956PMID 31064982.

^ Gallagher CL, Holloway T (2020). “Integrating Air Quality and Public Health Benefits in U.S. Decarbonization Strategies”. Front Public Health. 8: 563358. doi:10.3389/fpubh.2020.563358PMC 7717953PMID 33330312.

^ Luderer, Gunnar; Pehl, Michaja; Arvesen, Anders; Gibon, Thomas; Bodirsky, Benjamin L.; de Boer, Harmen Sytze; Fricko, Oliver; Hejazi, Mohamad; Humpenöder, Florian; Iyer, Gokul; Mima, Silvana (19 November 2019). “Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies”. Nature Communications. 10 (1): 5229. Bibcode:2019NatCo..10.5229Ldoi:10.1038/s41467-019-13067-8ISSN 2041-1723PMC 6864079PMID 31745077.

Jump up to:a b Clean Edge (2009). Clean Energy Trends 2009 Archived 18 March 2009 at the Wayback Machine pp. 1–4.

^ “Global energy transformation: A roadmap to 2050 (2019 edition)”. /publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition. 8 April 2019. Archived from the original on 18 April 2019. Retrieved 9 December 2020.

^ “Getting the most out of tomorrow’s grid requires digitisation and demand response”The EconomistISSN 0013-0613. Retrieved 24 June 2022.

^ REN21 Renewables Global Status Report 2011, p. 14.

^ MakieÅ‚a, Kamil; Mazur, BÅ‚ażej; GÅ‚owacki, Jakub (30 June 2022). “The Impact of Renewable Energy Supply on Economic Growth and Productivity”. Energies. 15 (13): 4808. doi:10.3390/en15134808ISSN 1996-1073.

Jump up to:a b Leone, Steve (25 August 2011). “U.N. Secretary-General: Renewables Can End Energy Poverty”. Renewable Energy World. Archived from the original on 28 September 2013. Retrieved 27 August 2011.

^ “Renewable Energy by Country 2021”. worldpopulationreview.com. Retrieved 27 December 2021.

^ “Renewables 2021 Global Status Report”. www.ren21.net. Retrieved 29 April 2022.

^ Abnett, Kate (20 April 2022). “European Commission analysing higher 45% renewable energy target for 2030”Reuters. Retrieved 29 April 2022.

^ REN21 Renewables Global Status Report 2010.

Jump up to:a b “Renewables 2021 Global Status Report”. www.ren21.net. Retrieved 25 April 2022.

Jump up to:a b “Climate Change 2022: Mitigation of Climate Change”. IPCC Sixth Assessment Report. Retrieved 6 April 2022.

^ “Renewables 2022 Global Status Report”. www.ren21.net. Retrieved 20 June 2022.

^ Mishra, Twesh. “India to develop and build first indigenous Hydrogen Fuel Cell Vessel”. The Economic Times. Retrieved 9 May 2022.

^ “IEA SHC || Solar Heat Worldwide”. www.iea-shc.org. Retrieved 24 June 2022.

Jump up to:a b “Geothermal Heat Pumps – Department of Energy”. energy.gov. Archived from the original on 16 January 2016. Retrieved 14 January 2016.

^ “Fast Growth for Copper-Based Geothermal Heating & Cooling”. Archived from the original on 26 April 2019. Retrieved 26 April 2019.

^ Source for data beginning in 2017: “Renewable Energy Market Update Outlook for 2023 and 2024” (PDF). IEA.org. International Energy Agency (IEA). June 2023. p. 19. Archived (PDF) from the original on 11 July 2023. IEA. CC BY 4.0. ● Source for data through 2016: “Renewable Energy Market Update / Outlook for 2021 and 2022” (PDF). IEA.org. International Energy Agency. May 2021. p. 8. Archived (PDF) from the original on 25 March 2023. IEA. Licence: CC BY 4.0

^ IRENA 2023, p. 21.

^ IRENA 2023, p. 21. Note: Compound annual growth rate 2013-2022.

Jump up to:a b c d “Global Electricity Review 2023”Ember. 12 April 2023. Retrieved 26 July 2023.

^ NREL ATB 2021, Utility-Scale PV.

Jump up to:a b Philibert, Cédric (2011). Solar energy perspectives. International Energy Agency, Organisation for Economic Co-operation and Development. Paris: OECD/IEA. ISBN 978-92-64-12458-5OCLC 778434303.

^ “Solar Fuels and Artificial Photosynthesis”. Royal Society of Chemistry. 2012. Archived from the original on 2 August 2014. Retrieved 11 March 2013.

^ “Solar – Fuels & Technologies”. IEA. Retrieved 27 June 2022.

^ “Energy Sources: Solar”. Department of Energy. Archived from the original on 14 April 2011. Retrieved 19 April 2011.

^ NREL.gov U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis Archived 14 October 2014 at the Wayback Machine, July 2013, p. iv.

^ “National Renewable Energy Laboratory: Solar Has The Most Potential Of Any Renewable Energy Source”. thinkprogress.org. 30 July 2013. Archived from the original on 22 January 2015.

^ “Renewable Energy”. Center for Climate and Energy Solutions. 27 October 2021. Archived from the original on 18 November 2021. Retrieved 22 November 2021.

^ “Clean Energy Australia Report 2021” (PDF). Clean Energy Australia. Archived (PDF) from the original on 2 April 2021. Retrieved 2 April 2021.

^ “Solar energy”. Australian Renewable Energy Agency. Retrieved 15 August 2022.

^ Laing, Timothy (April 2022). “Solar power challenges”. Nature Sustainability. 5 (4): 285–286. doi:10.1038/s41893-021-00845-wISSN 2398-9629S2CID 246065882.

Jump up to:a b c “Renewable Electricity Capacity And Generation Statistics June 2018”. Archived from the original on 28 November 2018. Retrieved 27 November 2018.

^ “Solar (photovoltaic) panel prices vs. cumulative capacity”. OurWorldInData.org. 2023. Archived from the original on 29 September 2023. OWID credits source data to: Nemet (2009); Farmer & Lafond (2016); International Renewable Energy Agency (IRENA).

^ “Swanson’s Law and Making US Solar Scale Like Germany”. Greentech Media. 24 November 2014.

^ “Crossing the Chasm” (PDF). Deutsche Bank Markets Research. 27 February 2015. Archived (PDF) from the original on 30 March 2015.

^ “Solar Integrated in New Jersey”. Jcwinnie.biz. Archived from the original on 19 July 2013. Retrieved 20 August 2013.

Jump up to:a b c d e f IEA (2022), Renewables 2022, IEA, Paris https://www.iea.org/reports/renewables-2022 , License: CC BY 4.0

^ IEA (2014). “Technology Roadmap: Solar Photovoltaic Energy” (PDF). iea.org. Archived from the original (PDF) on 1 October 2014. Retrieved 7 October 2014.

^ “Infrastructure Boom! Centre approves six projects linked to roads, railways & renewable energy – All you need to know”. Financialexpress. 23 March 2023. Retrieved 23 March 2023.

^ Denis Lenardic. Large-scale photovoltaic power plants ranking 1 – 50 Archived 1 January 2016 at the Wayback Machine PVresources.com, 2010.

^ “Wind energy generation by region”. Our World in Data. Archived from the original on 10 March 2020. Retrieved 15 August 2023.

^ IRENA 2023, p. 14.

^ IRENA 2023, p. 14. Note: Compound annual growth rate 2013-2022.

^ NREL ATB 2021, Land-Based Wind.

^ “Analysis of Wind Energy in the EU-25” (PDF). European Wind Energy Association. Archived (PDF) from the original on 12 March 2007. Retrieved 11 March 2007.

^ “Electricity – from other renewable sources – The World Factbook”. www.cia.gov. Archived from the original on 27 October 2021. Retrieved 27 October 2021.

^ “Offshore stations experience mean wind speeds at 80 m that are 90% greater than over land on average.” Evaluation of global wind power Archived 25 May 2008 at the Wayback Machine “Overall, the researchers calculated winds at 80 meters [300 feet] above sea level traveled over the ocean at approximately 8.6 meters per second and at nearly 4.5 meters per second over land [20 and 10 miles per hour, respectively].” Global Wind Map Shows Best Wind Farm Locations Archived 24 May 2005 at the Wayback Machine. Retrieved 30 January 2006.

^ IRENA 2023, p. 9. Note: Excludes pure pumped storage.

^ IRENA 2023, p. 9. Note: Excludes pure pumped storage. Compound annual growth rate 2013-2022.

^ NREL ATB 2021, Hydropower.

^ Ang, Tze-Zhang; Salem, Mohamed; Kamarol, Mohamad; Das, Himadry Shekhar; Nazari, Mohammad Alhuyi; Prabaharan, Natarajan (2022). “A comprehensive study of renewable energy sources: Classifications, challenges and suggestions”. Energy Strategy Reviews. 43: 100939. doi:10.1016/j.esr.2022.100939ISSN 2211-467XS2CID 251889236.

^ Moran, Emilio F.; Lopez, Maria Claudia; Moore, Nathan; Müller, Norbert; Hyndman, David W. (2018). “Sustainable hydropower in the 21st century”. Proceedings of the National Academy of Sciences. 115 (47): 11891–11898. Bibcode:2018PNAS..11511891Mdoi:10.1073/pnas.1809426115ISSN 0027-8424PMC 6255148PMID 30397145.

^ “DocHdl2OnPN-PRINTRDY-01tmpTarget” (PDF). Archived from the original (PDF) on 9 November 2018. Retrieved 26 March 2019.

^ Afework, Bethel (3 September 2018). “Run-of-the-river hydroelectricity”. Energy Education. Archived from the original on 27 April 2019. Retrieved 27 April 2019.

^ “Renewable Electricity Capacity and Generation Statistics, June 2018”. Archived from the original on 28 November 2018.

^ “Net zero: International Hydropower Association”. www.hydropower.org. Retrieved 24 June 2022.

^ “Wave power – U.S. Energy Information Administration (EIA)”. www.eia.gov. Retrieved 10 December 2021.

^ “How Does Ocean Wave Power Work?”. Energy Informative. Archived from the original on 27 April 2019. Retrieved 27 April 2019.

^ Unwin, Jack (12 March 2019). “Top five trends in wave power”Archived from the original on 27 April 2019. Retrieved 27 April 2019.

^ “Hydropower Status Report”. International Hydropower Association. 11 June 2021. Archived from the original on 3 April 2023. Retrieved 30 May 2022.

 

No comments:

Post a Comment

How Credit Card Information Is Stolen And What To Do About It 

Getty Credit cards  may be a convenient way to spend hard-earned money, but they can also make for a convenient way for thieves to steal sai...