Tuesday, June 4, 2024

How To Read The News Like a Scientist


Jenice Kim

In our daily reading, we encounter all kinds of claims. Depending on the news story and the week, Chinese imports, coffee, large-cap stocks, snacking, and eggs should be embraced — or they should be avoided altogether. What’s a person to do when bombarded with confusing, contradictory information?

Try thinking like a scientist, says Emma Frans, who’s an epidemiology and psychiatry researcher at Oxford University in the UK and Karolinska Institutet in Sweden.  “In present times, our risk of being fooled is especially high,” she says. There are two main factors at play: “Disinformation spreads like wildfire in social media,” she adds, “and when it comes to news reporting, sometimes it is more important for journalists to be fast than accurate.”

Which is why it’s useful to know how to evaluate news the way a scientist does. Scientists labor under a burden of proof. They must conduct experiments and collect data under controlled conditions to arrive at their conclusions — and be ready to defend their findings with facts, not emotions. “We all have gut feelings and biases that sometimes cloud our judgment,” says Frans….Continue reading

By: Daniella Balarezo & Daryl Chen

Source: How to read the news like a scientist

.

Critics:

The information cycle (addressed as a whole or in its distinct components) is of great concern to information technologyinformation systems, as well as information science.

These fields deal with those processes and techniques pertaining to information capture (through sensors) and generation (through computationformulation or composition), processing (including encoding, encryption, compression, packaging), transmission (including all telecommunication methods), presentation (including visualization / display methods), storage (such as magnetic or optical, including holographic methods), etc.

Information visualization (shortened as InfoVis) depends on the computation and digital representation of data, and assists users in pattern recognition and anomaly detection.

The cognitive scientist and applied mathematician Ronaldo Vigo argues that information is a concept that requires at least two related entities to make quantitative sense. Michael Grieves has proposed that the focus on information should be what it does as opposed to defining what it is. Grieves has proposed  that information can be substituted for wasted physical resources, time, energy, and material, for goal-oriented tasks.

Goal-oriented tasks can be divided into two components: the most cost-efficient use of physical resources: time, energy and material, and the additional use of physical resources used by the task. This second category is by definition wasted physical resources. Information does not substitute or replace the most cost-efficient use of physical resources but can be used to replace the wasted physical resources.

The condition that this occurs under is that the cost of information is less than the cost of the wasted physical resources. Since information is a non-rival good, this can be especially beneficial for repeatable tasks. In manufacturing, the task category of the most cost-efficient use of physical resources is called lean manufacturing.

Information is any type of pattern that influences the formation or transformation of other patterns. In this sense, there is no need for a conscious mind to perceive, much less appreciate, the pattern. Consider, for example, DNA. The sequence of nucleotides is a pattern that influences the formation and development of an organism without any need for a conscious mind.

One might argue though that for a human to consciously define a pattern, for example a nucleotide, naturally involves conscious information processing. However, the existence of unicellular and multicellular organisms, with the complex biochemistry that leads, among other events, to the existence of enzymes and polynucleotides that interact maintaining the biological order.

Systems theory at times seems to refer to information in this sense, assuming information does not necessarily involve any conscious mind, and patterns circulating (due to feedback) in the system can be called information. In other words, it can be said that information in this sense is something potentially perceived as representation, though not created or presented for that purpose. For example, Gregory Bateson defines “information” as a “difference that makes a difference”.

If, however, the premise of “influence” implies that information has been perceived by a conscious mind and also interpreted by it, the specific context associated with this interpretation may cause the transformation of the information into knowledge.

Complex definitions of both “information” and “knowledge” make such semantic and logical analysis difficult, but the condition of “transformation” is an important point in the study of information as it relates to knowledge, especially in the business discipline of knowledge management. In this practice, tools and processes are used to assist a knowledge worker in performing research and making decisions, including steps such as:

  • Review information to effectively derive value and meaning
  • Reference metadata if available
  • Establish relevant context, often from many possible contexts
  • Derive new knowledge from the information
  • Make decisions or recommendations from the resulting knowledge

Stewart (2001) argues that transformation of information into knowledge is critical, lying at the core of value creation and competitive advantage for the modern enterprise. In a biological framework, Mizraji  has described information as an entity emerging from the interaction of patterns with receptor systems (eg: in molecular or neural receptors capable of interacting with specific patterns, information emerges from those interactions).

In addition, he has incorporated the idea of “information catalysts”, structures where emerging information promotes the transition from pattern recognition to goal-directed action (for example, the specific transformation of a substrate into a product by an enzyme, or auditory reception of words and the production of an oral response).

The Danish Dictionary of Information Terms argues that information only provides an answer to a posed question. Whether the answer provides knowledge depends on the informed person. So a generalized definition of the concept should be: “Information” = An answer to a specific question”.

When Marshall McLuhan speaks of media and their effects on human cultures, he refers to the structure of artifacts that in turn shape our behaviors and mindsets. Also, pheromones are often said to be “information” in this sense.

Communication normally exists within the context of some social situation. The social situation sets the context for the intentions conveyed (pragmatics) and the form of communication. In a communicative situation intentions are expressed through messages that comprise collections of inter-related signs taken from a language mutually understood by the agents involved in the communication.

Mutual understanding implies that agents involved understand the chosen language in terms of its agreed syntax and semantics. The sender codes the message in the language and sends the message as signals along some communication channel (empirics). The chosen communication channel has inherent properties that determine outcomes such as the speed at which communication can take place, and over what distance.

No comments:

Post a Comment

Revolutionize Your Marketing Virtual Assistant With Siri Like Voice MAVAS

Credit to:  arminhamidian The  Institute of Electrical and Electronics Engineers (IEEE)  reports that automation can lead to an  80% reducti...